On the Hyperbolicity of the Feigenbaum Fixed Point
نویسنده
چکیده
We show the hyperbolicity of the Feigenbaum fixed point using the inflexibility of the Feigenbaum tower, the Manẽ-Sad-Sullivan λLemma and the existence of parabolic domains (petals) for semi-attractive fixed points.
منابع مشابه
On the Hyperbolicity of the Period-doubling Fixed Point
We give a new proof of the hyperbolicity of the fixed point for the period-doubling renormalization operator using the local dynamics near a semi-attractive fixed point (in a Banach space) and the theory of holomorphic motions. We also give a new proof of the exponential contraction of the Feigenbaum renormalization operator in the hybrid class of the period-doubling fixed point: such proof use...
متن کاملChaotic Period Doubling
The period doubling renormalization operator was introduced by M. Feigenbaum and by P. Coullet and C. Tresser in the nineteen-seventieth to study the asymptotic small scale geometry of the attractor of one-dimensional systems which are at the transition from simple to chaotic dynamics. This geometry turns out to not depend on the choice of the map under rather mild smoothness conditions. The ex...
متن کاملFeigenbaum - Coullet - Tresser universality and Milnor ’ s Hairiness Conjecture
We prove the Feigenbaum-Coullet-Tresser conjecture on the hyperbolicity of the renormalization transformation of bounded type. This gives the first computer-free proof of the original Feigenbaum observation of the universal parameter scaling laws. We use the Hyperbolicity Theorem to prove Milnor’s conjectures on self-similarity and “hairiness” of the Mandelbrot set near the corresponding parame...
متن کاملFeigenbaum - Coullet - Tresser universality and Milnor ’
We prove the Feigenbaum-Coullet-Tresser conjecture on the hyperbolicity of the renormalization transformation of bounded type. This gives the first computer-free proof of the original Feigenbaum observation of the universal parameter scaling laws. We use the Hyperbolicity Theorem to prove Milnor’s conjectures on self-similarity and “hairiness” of the Mandelbrot set near the corresponding parame...
متن کاملGeometry of the Feigenbaum Map
We show that the Feigenbaum-Cvitanović equation can be interpreted as a linearizing equation, and the domain of analyticity of the Feigenbaum fixed point of renormalization as a basin of attraction. There is a natural decomposition of this basin which enables to recover a result of local connectivity by Jiang and Hu for the Feigenbaum Julia set.
متن کامل